Resonance Raman evidence for oxygen exchange between the FeIV = O heme and bulk water during enzymic catalysis of horseradish peroxidase and its relation with the heme-linked ionization.
نویسندگان
چکیده
Raman spectroscopic studies of compound II of horseradish peroxidase show that the oxygen atom in the FeIV = O group of the heme is rapidly exchanged in H2O at pH 7.0 but not in an alkaline solution (pH 11.0). This conclusion is based on studies of shift in the FeIV = O stretching mode of compound II in H2(18)O; further studies show that the FeIV = O heme is hydrogen-bonded to an amino acid residue of the protein in neutral solutions but not in the alkaline solution. Deprotonation of this residue takes place with the midpoint pH at 8.8 and accordingly corresponds to the so-called heme-linked ionization. It is concluded that this hydrogen-bonded proton plays an important part in the oxygen exchange mechanism. From this it seems clear that this hydrogen-bonded proton has an essential role in the acid/base catalysis of this enzyme and that alkaline deactivation of this enzyme can be attributed to the lack of a hydrogen-bonded proton at high pH.
منابع مشابه
Resonance Raman study on cytochrome c peroxidase and its intermediate. Presence of the Fe(IV) = O bond in compound ES and heme-linked ionization.
Resonance Raman spectra of ferrous and ferric cytochrome c peroxidase and Compound ES and their pH dependences were investigated in resonance with Soret band. The Fe(IV) = O stretching Raman line of Compound ES was assigned to a broad band around 767 cm-1, which was shifted to 727 cm-1 upon 18O substitution. The 18O-isotopic frequency shift was recognized for Compound ES derived in H218O, but n...
متن کاملA review of structural properties, metabolic function and measurement of peroxidase activity
The production of reactive oxygen species occurs during the natural metabolism of oxidative-breathing cells. Among reactive oxygen species, hydrogen peroxide is more dangerous to cell life due to its long half-life, but it is meanwhile an important regulatory molecule in redox signaling in living things. Peroxidases are one of the key antioxidant enzymes that are widely distributed in nature an...
متن کاملStructural insights into the effects of charge-reversal substitutions at the surface of horseradish peroxidase
Horseradish peroxidase (HRP), has gained significant interests in biotechnology, especially in biosensor field and diagnostic test kits. Hence, its solvent-exposed lysine residues 174, 232, and 241 have been frequently modified with the aim of improving its stability and catalytic efficiency. In this computational study, we investigated the effects of Lys-to-Glu substitutions on HRP structure t...
متن کاملLow frequency vibrational modes of oxygenated myoglobin, hemoglobins, and modified derivatives.
The low frequency resonance Raman spectra of the dioxygen adducts of myoglobin, hemoglobin, its isolated subunits, mesoheme-substituted hemoglobin, and several deuteriated heme derivatives are reported. The observed oxygen isotopic shifts are used to assign the iron-oxygen stretching (approximately 570 cm-1) and the heretofore unobserved delta (Fe-O-O) bending (approximately 420 cm-1) modes. Al...
متن کاملIn Vitro Study of Acriflavine Interaction with Horseradish Peroxidase C
Acriflavine (3,6-diaminoacridine) is an anticeptic drug developed in 1912. Previous research has focused on investigation of the intercalating features of acriflavine, but little is known about its interaction with proteins. Drug-receptor interaction is of major interest in clinical science. The aim of the present study was to evaluate the ability of acriflavine to induce alterations in conform...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 83 8 شماره
صفحات -
تاریخ انتشار 1986